

Set 1. Oxidation and Reduction

Fill in the spaces for the following five reactions:

1. $4Na + O_2 \rightarrow 2Na_2O$

Species Oxidised _____ Species reduced _____

Oxidant Reductant

2. $2Cr^{3+}(aq) + 3Zn(s) \rightarrow 6Cr(s) + 3Zn^{2+}(aq)$

Species Oxidised _____ Species reduced _____

Oxidant Reductant

3. $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$

Species Oxidised _____ Species reduced _____

Oxidant _____ Reductant _____

4. $Cr_2O_7^{2-}(aq) + 3H_2S(g) + 8H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3S(s) + 7H_2O(1)$

Species Oxidised _____ Species reduced _____

Oxidant _____ Reductant _____

5. $H_2O_2(1) + H^+(aq) + Cl^-(aq) \rightarrow HClO(aq) + H_2O(1)$

Species Oxidised _____ Species reduced _____

Oxidant _____ Reductant _____

Write the oxidation numbers for each of the elements underlined here.

6. <u>SnCl</u>₄ 7. H₃PO₄ 8. <u>CO</u>₃²⁻ 9. H<u>C</u>OOH 10. <u>Mn</u>O₄

For the following reactions, state the elements that have been oxidised and reduced by, observing any change in oxidation numbers.

7. $2HBr + H_2SO_4 \rightarrow Br_2 + SO_2 + 2H_2O$

Species Oxidised _____ Species reduced _____

8. $2\operatorname{SnCl}_2 + 4\operatorname{HCl} + \operatorname{O}_2 \rightarrow 2\operatorname{SnCl}_4 + 2\operatorname{H}_2\operatorname{O}$

Species Oxidised _____ Species reduced _____

9. $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 6\operatorname{Fe}^{2+} + 14\operatorname{H}^+ \to 2\operatorname{Cr}^{3+} + 6\operatorname{Fe}^{3+} + 7\operatorname{H}_2\operatorname{O}.$

Species Oxidised _____ Species reduced _____

10. $Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$

Species Oxidised ______ Species reduced _____

11. $Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$

Species Oxidised _____ Species reduced _____

Set 2. Oxidation

Multiple Choice Questions

- What are the oxidation numbers of hydrogen in the compounds LiH, MgH, and 1. NH₃ respectively?
 - (a) +1, +1, +1
- (b) +1, +2, +3
- (c) +1, +1, -1
- (d) -1, -1, +1
- (e) -1, -1, -1
- What is the oxidation number of oxygen in hydrogen peroxide? 2.
- (b) -1
- (c)
- (d)

+1

- +2
- What are the oxidation numbers of nitrogen in the compounds NO₂, N₂O, N₂O₄ respectively?
 - (a) +2, +1, +4
- (b) +2, +1, +2

0

- +1, +2, +2(c)
- (d) +4, +1, +4
- (e) +4, +2, +4
- 4. Among the following reactions, the one involving oxidation as well as reduction
 - (a) $H^+ + OH^- \rightarrow H_2O$
- (b) $Zn + 2H^+ \rightarrow Zn^{2+} + H_2$
- (c) $CO_3^{2-} + 2H^+ \rightarrow CO_2 + H_2O$ (d) $CuO + 2H^+ \rightarrow Cu^{2+} + H_2O$
- (e) $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$
- Given that the oxidation state of cyanide ion, CN is -1, in the compound 5. K₄Ni(CN)₄ the oxidation state of Ni is
 - (a) +4
- (b) +2
- (c) 0
- (d) -2
- (e) -4
- Sulfur dioxide was passed through aqueous bromine solution. The solution changed from orange to colourless. During the reaction, the oxidation number of bromine has changed from

- +4 to +6 (b) +4 to 0 (c) 0 to -1 (d) +6 to +4 (e) +6 to 0
- 7. During the reaction referred to in question 6 above, the oxidation number of sulfur has changed from

- +4 to +6 (b) +4 to 0 (c) 0 to -1 (d) +6 to +4 (e) +6 to 0
- Which of the following is not a redox reaction? 8.
 - $2H^+ + Zn \rightleftharpoons Zn^{2+} + H_2$ (b) $H^+ + OH^- \rightleftharpoons H_2O$
- - - $Cu^{2+} + Zn \rightleftharpoons Cu + Zn^{2+}$ (d) $2Fe^{3+} + S^{2-} \rightleftharpoons S + 2Fe^{2+}$
 - (e) $Fe + S \rightleftharpoons FeS$

9.	(a) (c).	chlorine chlorine	is an o	oxidisin y reactiv	g agen ⁄e	t (b)	lorine is passed over heated iron beca (b) iron (III) chloride can sublima (d) iron is a transition element high temperature			
10.	Whic						_	ion has l	een o	xidised?
			=:			2FeCl ₃ +				
		-		HCI	(c)	H_2O_2	(d)	HCl and	dH_2O	2
	(e) F	eCl ₂ and	l HCl							
11.	The	oxidatio	n num	ber of ir	on in l	Fe ₃ O ₄ is:				
	(a)	+2	(b)	+3	(c)	0	(d)	+4	(e)	+2 and +3
12.	The o	xidatior	numb	oer of ca	rbon i	n carbon	mono	xide CO	is	
	(a)	+4	(b)	+2	(c)	0	(d)	-2	(e)	-4
Wr	itten Que	estions								
1.	State	the oxid	lation 1	number	of the	species i	indicat	ed in eac	h:	
	(a)	S in N	Ia ₂ SO ₄						_	
	(b)									
	(c)	N in (Ca(NO	₃) ₂						
	(d)	C in N	Na ₂ CO ₃	3					_	
	(e)	N in I	NO ₂						_	
	(f)	S in H	ISO ₄			· · · · · · · · · · · · · · · · · · ·			_	
	(g)	S in H							_1	
	(h)	S in A	Al_2S_3				*		-	
2.	State	the oxic	lation :	number	of eac	h of the	elemer	nts in eac	h spe	cies:
	(a)	H ₂ S				10			-	
	(d)	-	H),-					Ba(M		
		SO ₂						AlCl		
	(j)	KNO			3				,	
3.	(a)	Whic	h of th	ese reac	tions v	vill be sp	ontan	eous? (Ye	es/ No	0)
		(i)	Ni +	I_2						
		(ii)	Ag+	- Au ³⁺						
		(iii)	Al+	Cd^{2+}	-					
		(:)	C_{1}	D						

(b) These are three metals and their ions used in an experiment:

 A/A^{+} , B^{2+}/B^{3+} and C^{2+}/C^{-} .

Ion B^{3+} reacts with metal C. Ion B^{2+} does not react with ion C^{2+} but does react with metal ion A^+ . Ion C^- does not react with any other metal or ion.

Place these metals and ions in order of reactivity: C^{2+} , A, B^{3+} from lowest to highest E° values.

- 4. In the following equations, state whether the substances underlined have been oxidised or reduced:
 - (a) $\underline{SO}_2 + 2H_2S \rightarrow 3S + 2H_2O$
 - (b) $PbO_2 + 4H\underline{Cl} \rightarrow PbCl_2 + 2H_2O + Cl_2$
 - (c) $H_2 + \underline{Cl}_2 \rightarrow 2HCl$
 - (d) $3\underline{CuO} + 2NH_3 \rightarrow 3Cu + 3H_2O + N_2$
- 5. State which of the following are redox reactions. For these reactions, identify the oxidising and the reducing agents. Balance the equations where necessary:
 - (a) $2H_2O_2 + MnO_4 \rightarrow 3O_2 + Mn^{2+} + 2H_2O$
 - (b) $BaCl_2 + Na_2SO_4 \rightarrow 2NaCl + BaSO_4$
 - (c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$
 - (d) $3H_2 + N_2 \rightarrow 2NH_3$
 - (e) $C + H_2O \rightarrow CO + H_2$
 - (f) $H^+ + NO_3^- + Fe^{2+} \rightarrow H_2O + NO_2 + Fe^{3+}$
 - (g) $3AgNO_3 + FeCl_3 \rightarrow AgCl + Fe(NO_3)_3$

(h)	NaS + AgNO	\rightarrow Ag ₂ S + NaNO ₃
(TI)	1 140,0 1 1151103	116,011101

(i)
$$2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$$

(j)
$$NaClO + Na_2SO_3 \rightarrow NaCl + Na_2SO_4$$

(k)
$$2CH_3OH + 2Na \rightarrow 2NaCH_3O + H_2$$

(1)
$$SO_3 + H_2O \rightarrow H_2SO_4$$

(m)
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

(n)
$$NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$$

(o)
$$2NaCl + MnO_2 + H_2SO_4 \rightarrow MnSO_4 + Na_2SO_4 + H_2O + Cl_2$$

(p)
$$2HBr + H_2SO_4 \rightarrow SO_2 + Br_2 + 2H_2O$$

(q)
$$2HNO_3 + 2HCl \rightarrow 2NO_2 + Cl_2 + 2H_2O$$

(r)
$$CuS + 2HNO_3 \rightarrow CuSO_4 + N_2O + H_2O$$

- 6. Write partial ionic equations for the following reactions in acidic solution:
 - (a) $I_2 \rightarrow 2IO_3$
 - (b) $HClO \rightarrow Cl^{-}$
 - (c) $NO_3^- \rightarrow NO$
 - (d) $NO_3 \rightarrow NO_2$
 - (e) $H_3PO_3 \rightarrow H_3PO_4$
 - $(f) MnO_4 \rightarrow Mn^{2+}$
 - (g) $SO_2 \rightarrow SO_4^{2-}$
 - (h) $C_2O_4^{2-} \to 2CO_3^{2-}$
 - (i) $SO_3^{2-} \rightarrow SO_4^{2-}$
 - (j) $H_2O_2 \rightarrow O_2$

7.	Balance the following equations and identify the elements that
	disproportionate in each reaction:

- (a) $2H_2O_2 \rightarrow 2H_2O + O_2$
- (b) $3HNO_2 \rightarrow 2NO + NO_3^- + H_3O^+$
- (c) $3AuCl \rightarrow 2Au + AuCl$
- (d) $4KClO_3 \rightarrow KCl + 3KClO_4$
- (e) $Br_2 + H_2O \rightarrow HBr + HBrO$
- 8. Write balanced equations for the following redox reactions:
 - (a) Producing chlorine by heating HCl gas and oxygen in the presence of a catalyst.
 - (b) The preparation of iron by passing hydrogen over hot solid iron (III) oxide.
- 9. Predict the products of the reactions between Zn and $O_{2'}$ Zn and $I_{2'}$ Zn and I_{2} .
- 10. Gaseous chlorine is a good oxidant. Predict the products of the redox reactions between chlorine and:
 - (a) P
- (b) PCl₃
- (c) CuCl
- (d) I-
- (a) _____(b) ____
- (c) _____ (d) ____
- 11. Identify the products of disproportionation reaction for the following species:
 - (a) Cu_2SO_4 (b) Hg_2Cl_2 (c) $NO_2 + H_2O$ (d) $Cl_2 + H_2O$
 - (a) _____
- (b) ____
- (c) ____
- (d) _____

Set 3. Redox Reactions

Multiple Choice Questions

- 1. Which of the following statements about the rusting of iron is **not** true?
 - (a) Rusting is accelerated by the presence of carbon dioxide.
 - (b) Rusting is accelerated by the presence of an electrolyte.
 - (c) Rusting slows down if an alkali is present.
 - (d) Rusting is accelerated if iron is connected to another metal which is more reactive than iron.
 - (e) Rusting is accelerated by the presence of sodium chloride solution.
- 2. Acidified potassium dichromate solution is a strong oxidising agent because:
 - (a) There are seven oxygen atoms in the compound.
 - (b) Oxygen atoms in the compound combine with hydrogen easily.
 - (c) Chromium in the compound has a high oxidation number which can easily be reduced to a lower oxidation number.
 - (d) Chromium metal is a good oxidising agent.
 - (e) K⁺ ions in the solution can easily be reduced.
- 3. Which of the following reactions show that hydrogen peroxide is a reducing agent?
 - (a) $PbO_2 + H_2O_2 \rightarrow PbO + H_2O + O_2$
 - (b) $H_2O_2 + dye \rightarrow H_2O + (dye + O)$
 - (c) $H_2S + H_2O_2 \rightarrow S + 2H_2O$
 - (d) $H_2SO_3 + H_2O_2 \rightarrow H_2SO_4 + H_2O_1$
 - (e) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$
- 4. The following reagents can be used to oxidise iron (II) ions to iron (III) ions except:
 - (a) chlorine water.
 - (b) hydrogen peroxide.
 - (c) hydrogen sulfide H,S.
 - (d) hypochlorous acid HClO.
 - (e) acidified potassium dichromate.
- 5. Which of is a good way of preventing the rusting of steel?
 - (a) Connect it to the positive terminal of a cell.
 - (b) Keep it free from oil.
 - (c) Keep it in a humid atmosphere.
 - (d) Plate it with a coating of copper.
 - (e) Remove oxygen from around the iron.
- 6. Acidified potassium permanganate solution is a strong oxidising agent because:
 - (a) There are 7 oxygen atoms in the compound.
 - (b) Oxygen atoms in the compound combine with hydrogen easily.
 - (c) Manganese in the compound multiple oxidation states that can be formed.
 - (d) Manganese metal is a good oxidant.
 - (e) K⁺ ions in the solution can easily be reduced.

Chapter 3

7.8.	(a) (b) (c) (d) (e) A me	 b) Hydrogen sulfide. c) Potassium iodide solution. d) Oxalic acid (H₂C₂O₄) solution. 									
	is for	med which	h soon 1	redissol	ves in t	he exce	ss sodiu	ım hydi	roxide.)	X is:	ie
	(a)	Mn	(b)	O	(c)		(d)	Fe	(e)	Cu	
9.	Which of the following statements about the uses of aluminium is not true?										
	(a) (b) (c) (d) (e)	Used as domestic cooking utensils. Used for the thermite process. Used for making alloys for aircraft bodies.									
10.		l C can dis								e metal C io	on
	What is the order of these metals going from the best to the worst oxidant?										
Calc	ulatio	ns									
	(a)	ABC	(b)		(c)					ACB	
1.	solut of a (In a titration experiment, a student was required to standardise an iron(II) sulfate solution. She found that 20.0 mL of the solution, when acidified, required 25.0 mL of a 0.10 mol $\rm L^{-1}$ potassium permanganate solution for complete reaction.									
	(i)	Write the	reactio	n equat	tion.			9:			
	1								- American		
	(ii)	Calculate	the mo	lar con	.centrati	on of th	ne iron (II) sulfa	ate solut	ion.	
				E		***************************************					
2.	prep solu mL	ared a dilution. 20.0 r	ite solu nL of th l L-1 pot	tion by nis dilu assium	adding te H ₂ O ₂ dichro	100.0 m solutio mate so	nL of dis on, when	stilled v n acidif	vater to ied, read	solution. S 10.0 mL of t cted with 30 concentrati	he: 0.0
	-									9	
	7 										

the oxal	mL portions of this solution were titrated against a standard 0.11 m solution. The average titre was 10.0 mL. Calculate the concentratilic acid solution using the normal half equations.
A 1.70 g	g of mineral sample containing chromium was analysed as follows um was first converted to sodium dichromate. 50.0 mL of a 0.20 m
standar	d iron (II) sulfate solution were required to titrate the dichromate sold point. Determine the percentage of chromium in the mineral same
)-	·
made u	crystalline oxalic acid was dissolved in distilled water and the solution one litre. 20.0 mL of this solution, when acidified, reduced potassium permanganate solution. Calculate the concentration oganate solution.
KMnO, s	of a H_2O_2 solution when acidified required 40.0 mL of a 0.020 mc solution for complete oxidation. Determine the concentration of the land the volume of oxygen liberated at 35°C and 100.6 kPa pressure
KMnO, s	solution for complete oxidation. Determine the concentration of the l

Calc	culate the molar concentration of the $KMnO_4$ solution.
	4
In st	candardising a $K_2Cr_2O_7$ solution, 20.0 mL portions of a 0.05 mol L ⁻¹ iron
sulfa	ate solution, when acidified, reacted with 7.50 mL of the ${ m K_2Cr_2O_7}$ solution
Calc	rulate the molarity of the dichromate solution.
£	
sam KM1	etermining the iron (II) ion concentration of water, it was found that 50.0 ples of the water, when acidified, required 1.50 mL of a 0.0010 mc nO_4 solution for complete oxidation. Calculate the concentration of Fe ²⁺ rater.
sam KM1	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc
sam KM1	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc $_{ m 4}$ solution for complete oxidation. Calculate the concentration of Fe $^{ m 2+}$
sam KMi in w	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc $_{ m 4}$ solution for complete oxidation. Calculate the concentration of Fe $^{ m 2+}$
sam KMi in w	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc nO ₄ solution for complete oxidation. Calculate the concentration of Fe ²⁺ rater. diffied potassium dichromate will oxidise hydrogen peroxide according unbalanced equation:
sam KMi in w Acid	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc nO_4 solution for complete oxidation. Calculate the concentration of Fe ²⁺ rater. diffied potassium dichromate will oxidise hydrogen peroxide according following unbalanced equation: $Cr_2O_7^{2-}(aq) + H_2O_2(aq) \rightarrow Cr^{3+}(aq) + O_2(g)$
sam KMi in w	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc nO ₄ solution for complete oxidation. Calculate the concentration of Fe ²⁺ rater. diffied potassium dichromate will oxidise hydrogen peroxide according unbalanced equation:
sam KMi in w Acid	ples of the water, when acidified, required 1.50 mL of a 0.0010 mc nO_4 solution for complete oxidation. Calculate the concentration of Fe ²⁺ rater. $ \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \left(\frac{1}{2} \right) dt \right) + \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \left(\frac{1}{2} \right) dt + \frac{1}{2} \int_{0}^$

of p	ree 25.0 mL samples of a potassium oxalate solution ($K_2C_2O_4$), when acid h sulfuric acid, required the following titres: 24.48 mL, 24.54 mL and 24.4 potassium permanganate solution of concentration 0.020 mol L ⁻¹ for concentration.
The	e relevant unbalanced equation is: $C_2O_4^{2-}(aq) + MnO_4^{-}(aq) \rightarrow Mn^{2+}(aq) + CO_4^{-}(aq)$
Det	ermine:
(a)	The average titre value of KMnO ₄ .
(b)	The concentration of the potassium oxalate solution.
(c)	The volume of cover distribute of the cover distribute
(0)	The volume of carbon dioxide that could be collected at S.T.P by the reaction of potassium permanganate with 25.0 mL $K_2C_2O_4$.
volui porti	0 g sample of iron ore was crushed and dissolved to produces only iron. The resulting solution was acidified with dilute sulfuric acid and me made up to 500 mL in a volumetric flask, using distilled water. 25.0 ons of this dilute solution required an average titre of 20.0 mL of potass langanate of concentration 0.020 mol L-1 for complete reaction.
	relevant unbalanced equation is: $Fe^{2+}(aq) + MnO_4^{-}(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$
THE	

to a Sep an	40.0 mL sample of a commercial hydrogen peroxide solution was transferred a volumetric flask and the volume made up to 1000.0 mL with distilled water parate 20.00 mL samples of the solution acidified with sulfuric acid, required average volume of 20.20 mL of 0.016 M potassium permanganate solution for omplete reaction. The unbalanced equation is:
H,	$O_2(1) + MnO_4^{-1}(aq) \rightarrow Mn^{2+}(aq) + O_2(g)$
	termine:
(a)	The concentration of the commercial hydrogen peroxide in mol $\mathrm{L}^{\text{-}1}$
-	
	<u> </u>
(b)	The percentage by mass of hydrogen peroxide in the commercial solution. (Assume the density of the solution to be 1 g cm ⁻³ .)
(c)	The volume strength of the commercial solution (how many moles of oxygen 1 mole of solution produces).
3	